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ABSTRACT
Falls are a major health concern among elderly populations. There
is a critical need to develop automated systems for assessing a
patient’s fall risk although the methodologies for determining this
risk vary in e�cacy, accessibility, and comfort. With advancements
in smart home technology, aging in place and accurate fall risk
assessment are no longer mutually exclusive. This paper presents a
user friendly fall risk assessment system designed for care providers
to non-invasively but continuously monitor their patient’s risk of
falling. The proposed system employs a pressure sensor-embedded
�oor - a SmartFloor - installed in the patient’s home to monitor
trends in gait parameters like gait speed, stride length, and step
width. The system allows care providers to visualize dangerous
changes to their patient’s gait 24/7 and without disturbing the
patient. To facilitate diagnoses and fall risk assessment, the system
also reconstructs a skeletal visualization of each recorded walking
segment. This is done using a motion similarity algorithm and a
database of SmartFloor and Microsoft Kinect data. We tested the
accuracy of several variations of the motion similarity algorithm
using a small pool of seven participants and the results are presented
in this paper.

CCS CONCEPTS
•Computer systems organization→ Embedded systems; •Human-
centered computing→ Information visualization; •Applied
computing→ Bioinformatics.
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1 INTRODUCTION
As the average human lifespan increases, the ways in which society
monitors and treats the aging population must adapt alongside this
demographic change. Older adults and the elderly are often most
susceptible to injuries and accidents.Unintentional injury is the
seventh leading cause of death for older adults and falls account
for the largest percentage of those deaths. Approximately one in
four U.S. residents aged 65 or older report falling each year [3].
Even nonfatal falls can be debilitating and limit an elderly person’s
mobility and freedom for years.

Systems for fall prevention and fall prediction can be designed to
address this crisis and facilitate aging in place in graceful manner.
Fall prediction is a reliable estimation of fall risk and development
of pre-fall alert systems. Fall prevention involves techniques and
interventions that mitigate fall risk factors, improve mobility, and
prevent future falls [14]. The key to lowering the number of falls
is the ability to assess an individual’s risk of falling and monitor
changes to that risk consistently. There are several ways that care
providers do this. Most popular among these are balance and mo-
bility tests conducted by healthcare providers in a clinical setting.
These tests usually require a combination of physical evaluations
and health history questions. While these tests are quick and ac-
cessible, their infrequency leaves lengthy gaps where changes to a
patient’s health could increase their fall risk dramatically.

Thus, monitoring systems that continuously assess fall risk have
become an important �eld of smart-health research. These systems
rely on networks of sensors that collect data passively on the pa-
tient. These sensors can either be wearable or ambient and can be
designed to monitor a variety of things like sleep hygiene, activity
level, medication consumption, blood pressure, balance, posture,
and gait - all of which inform a patient’s fall risk [14]. These phys-
iological parameters can then be analyzed alongside information
about the patient’s environment, demographic, and behavior to
achieve a holistic estimation of their fall risk.

The next section provide relevant background on pertinent tech-
nologies. Section III describes the technical challenges. Section IV
describes previous work in the related problem. Section V describes
various components of the proposed system. Section VI present the
results and the last section concludes the paper with some �nal
remarks.
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2 BACKGROUND
This section introduces some areas of study intertwined with fall
prevention and fall risk assessment. Many of the following tech-
nologies and ideas are either referenced directly later in this paper
or informed the system we introduce in a major way.

2.1 The Internet of Things, Ubiquitous Sensing,
and Smart Environment Technology

The Internet of Things (IoT) is a system of interrelated computing
devices or digital machines with the ability to transfer data over
a network without requiring human input. One major application
of the IoT is smart home technology. Recent development in the
�eld of smart technology and IoT has allowed for applications that
incorporate ubiquitous sensing in clinics, assisted living centers, and
people’s homes. SmartCare is a project that uses smart environment
technology to facilitate aging in place [7]. In a SmartCare apartment,
ambient sensors of many kinds monitor the activity of elderly
residents in real time. One article theorizes a home equipped with
unobtrusive pressure sensors to monitor older adults [8]. These and
other smart environments provide the infrastructure required for
the type of fall prediction systems mentioned in [14]. Developing
a user interface (UI) to extract, analyze, and display the sensor
information collected in these smart environments is crucial for
successful fall prediction.

2.2 Non-Ambient Fall Risk Assessment
There are several methods to monitor fall risk. Mentioned previ-
ously are clinical fall risk assessments [13]. Another popular genre
of fall risk assessment tools are wearable sensors that monitor some
kind of physiological characteristic. These wearable sensors include
pressure sensor-embedded shoes, accelerometers, and SmartWalk-
ers [14], [9], [15], [6], [5]. The third common type of fall risk as-
sessment tools rely on ambient sensors which can include sensor-
embedded furniture, occupancy sensors, and camera systems.

2.3 Gait Analysis
Of the many risk factors that such interfaces can compile, gait is
one of the most commonly measured factors in popular fall risk as-
sessment tools. Indeed, clinical tests like the Tinetti-test, the Morse
Fall Scale, the Schmid Fall Risk Tool, and more use gait param-
eters in their overall fall risk calculation [11]. Researchers have
identi�ed that low gait speed (<1 m/s) is strongly associated with
several well-known fall risk factors including history of multiple
falls, depressive symptoms, and heavy medication use [10]. For
these reasons, continuously measuring a patient’s gait helps both
patients and healthcare providers stay up-to-date on the patient’s
fall risk and overall health. Researchers are currently using cameras,
accelerometers, pressure sensors, Kinect motion-tracking, and more
to measure gait. Raw data from these sensors is convoluted and re-
quires summarization of important gait parameters and recreation
of skeletal visualizations of patient gait.

Throughout this paper, several terms associated with gait and
gait analysis will be used. Gait is de�ned as a person’s manner of
walking. Figure 1 shows a diagram of one gait cycle. A gait cycle
has two main phases: the stance phase, when the �rst foot is on
the ground, and the swing phase, when the foot is not in contact

with the ground. Combined among those two phases, are eight
subphases that Figure 1 labels.

Figure 1: A diagram of one human gait cycle. Source: [16]

Di�erent aspects of these base units of gait can be measured to
serve as a robust informer of fall risk. In this paper, the gait param-
eters measured for our fall risk assessment system are detailed in
Table 1.

Table 1: Description of Gait Parameters

Parameter De�nition
Stride length (cm) Distance between successive ground

contacts of the same foot
Average speed (cm/s) Total distance traveled divided by

elapsed time
Double support time (s) Amount of time spent on both feet dur-

ing one gait cycle
Stride length variablity
(CoV)

Ratio between the standard-deviation
and mean of stride length, expressed as
percentage

Step width variability
(CoV)

Ratio between the standard-deviation
and mean of step width, expressed as
percentage

Step length variability
(cm)

Absolute di�erence between left and
right step length in one gait cycle

3 PROBLEM STATEMENT
We propose a gait monitoring and visualization system integrated
with the SmartCare project [7]. Through this system, the Smart-
Floor would unobtrusively provide insights into the gait patterns
and anomalies of an individual. This analysis is paired with a 3D
visualization of the individual’s gait, better equipping clinicians to
perform frequent, personalized fall risk assessments.

4 OVERVIEW OF RELATED RESEARCH
4.1 Ambient Health Monitoring
Past work has investigated the opportunities for ambient health
monitoring in a smart home.
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Jones et al. considers the implications of a fully pressure sensitive
home environment (�oor and furniture) as it relates to information
relay for caregivers [8]. Using a pressure sensitive mattress with
24 pressure sensors they could monitor parameters such as bed
occupancy, restlessness, and respiratory rate. They then provided
patients with visual sleep reports including a calculated restlessness
index and a timeline of bed entries and exits. This gives patients a
window into their sleep quality, which can a�ect fall risk, through
unobtrusive monitoring.

This system was based heavily on previous research performed
for the SmartCare introduced in [7]. One of the many ambient
sensors that the SmartCare SmartApartment is equipped with is
the SmartFloor - a �oor underlain with an array of pressure sen-
sors designed to be installed in someone’s home to passively and
continuously monitor gait and balance parameters.

Work has been done to extract gait parameters from the Smart-
Floor using the center of pressure (COP). Even though the Smart-
Floor is relatively low-resolution (about 10 pressure sensors per
square meter of �oor), it is possible to �nd the approximate loca-
tions of individual footprints during any given walking segment by
�nding maximums and minimums in the COP velocity and acceler-
ation. This fall risk assessment system uses algorithms described
in [12] to extract gait parameters, to segment walking data, and to
isolate individual gait cycles from walking segments.

4.2 3D Pose Reconstruction from Foot Pressure
Data

A few researchers have demonstrated 3D pose reconstruction from
foot pressure data.

FootSee is a full body animation system operated through a high
resolution pressure sensor pad [18]. The system uses a foot pressure
database linked to a motion database. When the user performs
an action on the sensor pad, the most similar reading in the foot
pressure database is selected along with the corresponding motion
data.

GravitySpace is an interactive installation that senses pressure
readings on the �oor surface and infers the 3D scene above it,
projecting the results onto the �oor as a sort of mirror image of
reality [2]. Pressure readings are captured using frustrated total
internal re�ection (FTIR) with a 12 megapixel camera located below
the 8 m2 �oor, yielding a pressure reading for each 1⇥1 mm pixel.

Imprints on the �oor are grouped as pressure clusters and rec-
ognized as points of contact for furniture and humans in various
positions. They use a feed-forward neural network trained on 16
features including image moments, structure descriptors based on
Gaussian di�erences, and details about the bounds of each pressure
cluster in order to classify them as a shoe, knee, hand, etc. The
under-�oor camera system that powers the pressure sensing would
make it unfeasible to install GravitySpace in someone’s home for
gait monitoring.

5 SYSTEM COMPONENTS
Our prototype consists of two components: a data processing mod-
ule and a web based UI.

5.1 Data Processing
5.1.1 RawData Format. The SmartFloor unit consists of a 16x8 grid
of tiles with a Tekscan FlexiForce A401 pressure sensor installed at
the bottom right corner of each tile. This grid is split into four 4x8
boards laid side by side.

Figure 2: Layout of the boards and sensor grid on the Smart-
Floor

The unit is connected to a BeagleBone Black microprocessor
which records data at around 25 Hz. Each of the four boards takes
separate readings. The raw sensor readings from the SmartFloor
are stored in CSV format on a host Ubuntu laptop. The �le consists
of chunks of four lines representing readings from the four boards.
Each line is time-stamped and contains columns for the 50 possible
sensor connections. Only 32 of these spaces are occupied by actual
readings. A reading is represented as a 10-bit integer (i.e., 0—1023).

Figure 3: Each horizontal line represents the time domain
of one of the boards. A dot on the line marks a reading for
that board. The vertical dotted lines mark the interpolated
samples we take across all boards.

5.1.2 Initial Interpolation. The time-stamps for each board are not
the same over the whole four-chunk reading. Additionally, the
recording mechanism does not keep a clean 25 Hz sample rate for
all boards as seen in Figure 3, leading to some variation in sample
order. To address these issues we perform linear interpolation of
the combined matrix of readings across time and resample to an
even 25 Hz.

5.1.3 Noise Removal. Noise on the �oor is addressed by two means.
First, the initial �oor readings (when it is unoccupied) are subtracted
from all readings, and the result is clamped at zero. This is not suf-
�cient because there is still some stochastic behavior of the sensors
over time which can have a signi�cant impact on the center of
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pressure. Therefore we additionally build a mask that is rectangular
in shape, centered around the point of maximum pressure. The
mask discards all readings that are farther than a three tile radius
from the point of maximum pressure.

5.1.4 Center of Pressure Trajectory. The COP calculation at each
time step follow the formula for center of mass:

⇠$%G =

Õ
G,~ G% (G,~)Õ
G,~ % (G,~)

⇠$%~ =

Õ
G,~ ~% (G,~)Õ
G,~ % (G,~)

The center of pressure provides a sub-tile position metric that
would otherwise be hidden behind the 16x8 �oor resolution. From
this spatiotemporal data we can then calculate higher order deriva-
tives such as velocity, acceleration, jerk, etc. For example, the cen-
tered velocity approximation is calculated as:

+ (C) = ⇠$% (C + 1) �⇠$% (C � 1)
(C + 1) � (C � 1)

5.1.5 Footstep Detection. The COP motion provides clues into
where and when steps take place. Oluwadare presents a Double
Support and Single Support Detection (DS-SD) Algorithm for iden-
tifying heel strikes and toe-o�s [12]. We have made some modi�ca-
tions to this process.

First, they use the peaks in COP speed as heel-strike markers.
However, results from a synchronized video feed suggested to us
that peaks in the change in speed (i.e. magnitude of acceleration
in the direction of motion) are more appropriate markers of heel
strike times.

Second, it appears that his interpretation of double support po-
sition for stride length calculation as outlined in Algorithm 5.4 is
�awed. If the COP is at its peak speed (as it is where he de�nes the
start of double support) then it is not a very reliable indicator of
support position, instead it is marking some position between the
feet. We use local minima in the smoothed COP speed occurring
just prior to a heel-strike as markers for support position. At these
positions we know the speed is lowest so the foot is e�ectively
planted.

5.1.6 Cycle similarity. The cycles are rotated, normalized and re-
sampled; they then act as our COP trajectory paths. To �nd a similar
skeleton recording, we want to match an arbitrary query path to
our bank of known paths and �nd the most similar match.We tested
a few di�erent path similarity metrics, detailed later in the results
section.

5.2 User Interface
Our fall risk monitoring system is designed to be used by the care
providers of elderly patients and of other mobile patients at risk of
falling. Our system relies on the installation of a SmartFloor above
into the home of the patient like the SmartCare SmartApartment
[7]. Data is monitored continuously and unobtrusively as the pa-
tient walks around on their home. Data is continuously segmented
to contain only data from straight-line walking segments. Stops,
starts, turns, and standing in place are not helpful in gait analysis.
Each walking segment is timestamped and analyzed automatically

Figure 4: The top plot shows the extracted and classi�ed sup-
port positions (footsteps) with a gait line drawn between
them. The bottom plot demonstrates how heel strike times
(colored dashed lines) and support positions (gray dotted
lines) are extracted from COP spatiotemporal data. The
blue line represents COP speed while the orange represents
change in COP speed (not to scale). Note that the plot shows
raw values while the extrema are calculated on smoothed
data, hence the slight o�set

to extract values for six di�erent gait parameters. These gait param-
eters were chosen because past research has shown a statistically
signi�cant di�erence in these parameters between fallers and non-
fallers [17] [1] [4]. These walking segments and their associated
gait parameter values form the basis of our UI.

5.2.1 Web Application Setup. Our UI is hosted on a web application
built with basic HTML, JavaScript and CSS. Many of our styling
attributes are provided by the Bootstrap framework which we in-
corporate. Other stylistic attributes that we include are FTLabs and
SlideReveal. For plotting, we use the Plotly plotting library. For the
skeletal animation, we rely on the ThreeJS 3D and WebGL renderer
library.

5.2.2 Gait Parameter Plo�ing. Figure 5 shows the homepage of our
web application. We plot six di�erent gait parameter trend lines in
total. Each data point in a given subplot represents the daily average
for that subplot’s corresponding parameter. One day may have any
number of walking segments depending on that person’s activity
level for that day. The side bar on the left side of the homepage
has switches to toggle the display of each subplot. The plots are
interactive and allow dragging and clipping to change your view.
We designed the subplots to be connected so that changes to the
view/scope of one subplot changes the view/scope of all subplots.

Each subplot is equipped with a visual alert system. Whenever
a patient’s daily average for any given gait parameter reaches an
unhealthy or abnormal level (demarcated with red highlighting)
that day’s marker turns red. The red demarcations and marker color
change allow the care giver to visualize changes to a patients gait
that might be signaling a change to that person’s fall risk. The
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Figure 5: The homepage of our UI. Displayed are two of the
six plots that represent the daily averages of a particular gait
parameter. The plots are interactive and allow you to drag
and clip to see data from di�erent dates.

thresholds deemed as unhealthy and abnormal were calculated
using data summarized from [17] [1] [4] in Table 2. Any value
beyond two standard deviations of the healthy value is marked as
unhealthy or abnormal.

Table 2: Summary of Healthy Gait Parameters

Measure Mean [healthy] Std. Dev.
Stride length (cm) 111.15 22.53

Average speed (cm/s) 94.25 23.60
Double support time (s) 0.29 0.07

Stride length variability (CoV) 2.63 1.62
Step width variability (CoV) 19.6 16.6
Step length variability (cm) 0.69 0.157

5.2.3 Skeleton Animation. The second main feature of our UI is
a skeleton reconstruction of what someone’s gait most likely re-
sembled for any recorded walking segment. Each walking segment
corresponds to timestamped data from the SmartFloor. At data
processing time, each walking segment is further segmented into
gait cycles and each gait cycle is matched to the most similar gait
cycle from a prerecorded database of gait cycles. The gait cycles
in this prerecorded database were collected while the participant’s
skeleton was tracked using a Microsoft Kinect so each gait cycle
is mapped to a corresponding set of skeletal data. When a user
clicks on one of the segments inside daily view, the slider reveals a
rendering window displaying a skeletal visualization of that walk-
ing segment. This visualization is constructed by piecing together
the most similar gait cycle’s Kinect data into one animation loop.
The rendering window and animation is created using the ThreeJS
library. Figure 6 shows the UI after a click to a segment while in
daily view. One can return to regular daily view be pressing the
"Hide Visualization" button.

6 EXPERIMENTS AND RESULTS
We tested the accuracy of our nearest neighbor motion matching
algorithm on a set of walking data from N=7 participants. Each
participant walked along a 16 foot straight segment of SmartFloor.

Figure 6: The skeletal visualization of a walking segment af-
ter a click on a walking segment in daily view

Each time, the participants were asked to modify their gait in di�er-
ent ways after being given an explanation and short demonstration
of each of the six gait styles. The participants were recorded by a
Kinect for a demonstration of the prototype - the skeleton data was
never used to gather results.

The seven participants and six gait styles yielded 42 di�erent
walking segments that were further segmented into a total of 177
gait cycles. In order to test the nearest neighbor algorithm on as
many gait cycles as possible, we used 7-fold cross validation where
each "group" in our 7-fold was one participant and all of their gait
cycles. For each gait cycle in the testing data, we recorded the closest
match found by our nearest neighbor algorithm. If the closest match
came from a gait cycle of the same gait style in the training set, we
marked that matching as correct.

We tweaked our de�nition of "closest match" (and subsequently
our nearest neighbor algorithms) to test whether di�erent input
parameters yielded di�erent accuracies. These di�erent similarity
metrics are detailed in the Results section.

We tested a few similarity metrics when performing our nearest
neighbor queries. We know that the COP trajectory holds the rele-
vant gait information for a cycle. Our �rst metric involves building
a high dimensional feature vector containing the time series of the
mediolateral and anteroposterior position and velocity. Similarity
is measured by the euclidean distance between each cycle’s feature
vector.

Table 3 summarizes the accuracy calculations using this eu-
clidean distance metric.

The next distance metric involves a weighted sum of the dis-
tances between COP velocity and COP position. This computes
the average pairwise euclidean distances of the COP position and
velocity at each time step, and takes a weighted sum of the two.
Essentially, it is a measure of the space between each path in the
position and velocity spaces.
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Table 3: Results of Euclidean Distance as a Similarity Metric

Raveled feature distance
Correct Total Accuracy

Normal 10 16 62.50%
Slow 8 23 34.78%
Hunch 15 33 45.45%
Steppage 3 28 10.71%

Left Hobble 40 42 95.24%
Right Hobble 29 35 82.86%

Average 55.26%
Overall 105 177 59.32%

Table 4: Results of Custom Similarity Metric

Weighted path distance

Accuracy
All position All velocity Mix

Normal 56.25% 68.75% 68.75%
Slow 30.43% 39.13% 21.74%
Hunch 39.39% 48.48% 51.52%
Steppage 32.14% 10.71% 17.86%

Left Hobble 100.00% 97.62% 100.00%
Right Hobble 85.71% 80.00% 82.86%

Average 57.32% 57.45% 57.12%
Overall 62.15% 61.02% 61.58%

Table 4 shows the result of this similarity metric. We tested the
results with all of the weight in the positional distance, then all
in the velocity distance, and lastly a fairly even mix of the two.
The results across each distribution of the weights was surprisingly
insigni�cant.

Note that the overall accuracy values are in�ated by the high
number of hobble cycles extracted from our sample data. This style
of gait was much easier to classify correctly, so treating each gait
style as independent and taking the average of each style’s accuracy
serves as a better indicator of general performance.

It’s important to note that the accuracy values for our classi�ca-
tion experiments are signi�cantly bottlenecked by the quality of
data we were working with, and the disparity between participant
interpretations of each gait style is likely the cause of the under-
whelming classi�cation accuracies. Future work should increase the
number of subjects to better estimate the accuracy of this model.

7 CONCLUSIONS
In this research, we performed the data cleanup, normalization
and gait cycle nearest neighbor lookup necessary to extract similar
skeletal data from incoming �oor pressure readings, and found it to
perform moderately in classi�cation of gait style. We also designed
and built the foundation necessary to relay gait parameter trends
and walk segment visualization to care providers through a web
app. During our work we were able to adjust the DS-SD algorithm
presented in Oluwadare’s thesis [12] to more accurately re�ect the
behavior of the gait cycle.
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